Gateway to Think Tanks
来源类型 | Articles |
规范类型 | 论文 |
DOI | https://doi.org/10.1007/s11027-018-9796-x |
ISSN | 1381-2386 |
Greenhouse gas emissions along a peat swamp forest degradation gradient in the Peruvian Amazon: soil moisture and palm roots effects | |
Jelsma, I.; Woittiez, L.S.; Ollivier, J.; Dharmawan, A.H. | |
发表日期 | 2019 |
出处 | Mitigation and Adaptation Strategies for Global Change 24(4): 625-643 |
出版年 | 2019 |
语种 | 英语 |
摘要 | Tropical peatlands in the Peruvian Amazon exhibit high densities of Mauritia flexuosa palms, which are often cut instead of being climbed for collecting their fruits. This is an important type of forest degradation in the region that could lead to changes in the structure and composition of the forest, quality and quantity of inputs to the peat, soil properties, and greenhouse gas (GHG) fluxes. We studied peat and litterfall characteristics along a forest degradation gradient that included an intact site, a moderately degraded site, and a heavily degraded site. To understand underlying factors driving GHG emissions, we examined the response of in vitro soil microbial GHG emissions to soil moisture variation, and we tested the potential of pneumatophores to conduct GHGs in situ. The soil phosphorus and carbon content and carbon-to-nitrogen ratio as well as the litterfall nitrogen content and carbon-to-nitrogen ratio were significantly affected by forest degradation. Soils from the degraded sites consistently produced more carbon dioxide (CO2) than soils from the intact site during in vitro incubations. The response of CO2 production to changes in water-filled pore space (WFPS) followed a cubic polynomial relationship with maxima at 6070% at the three sites. Methane (CH4) was produced in limited amounts and exclusively under water-saturated conditions. There was no significant response of nitrous oxide (N2O) emissions to WFPS variation. Lastly, the density of pneumatophore decreased drastically as the result of forest degradation and was positively correlated to in situ CH4 emissions. We conclude that recurrent M. flexuosa harvesting could result in a significant increase of in situ CO2 fluxes and a simultaneous decrease in CH4 emissions via pneumatophores. These changes might alter long-term carbon and GHG balances of the peat, and the role of these ecosystems for climate change mitigation, which stresses the need for their protection. |
主题 | peatlands ; swamps ; greenhouse gases ; soil |
区域 | Peru |
URL | https://www.cifor.org/library/6828/ |
来源智库 | Center for International Forestry Research (Indonesia) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/94013 |
推荐引用方式 GB/T 7714 | Jelsma, I.,Woittiez, L.S.,Ollivier, J.,et al. Greenhouse gas emissions along a peat swamp forest degradation gradient in the Peruvian Amazon: soil moisture and palm roots effects. 2019. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
13812386.jpg(7KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 | ||
AHergoualch1801.pdf(869KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。