G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w29843
来源IDWorking Paper 29843
Highly Powered Analysis Plans
Michael L. Anderson; Jeremy Magruder
发表日期2022-03-14
出版年2022
语种英语
摘要Formal analysis plans limit false discoveries by registering and multiplicity adjusting statistical tests. As each registered test reduces power on other tests, researchers prune hypotheses based on prior knowledge, often by combining related indicators into evenly-weighted indices. We propose two improvements to maximize learning within these types of analysis plans. First, we develop data-driven optimized indices that can yield more powerful tests than evenly-weighted indices. Second, we discuss organizing the logical structure of an analysis plan into a gated tree that directs type I error towards these high-powered tests. In simulations we show that researchers may prefer these "optimus gates" across a wide range of data-generating processes. We then assess our strategy using the community-driven development (CDD) application from Casey et al. (2012) and the Oregon Health Insurance Experiment from Finkelstein et al. (2012). We find substantial power gains in both applications, meaningfully changing the conclusions of Casey et al. (2012).
主题Econometrics ; Estimation Methods ; Data Collection ; Experimental Design ; Development and Growth ; Development
URLhttps://www.nber.org/papers/w29843
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587515
推荐引用方式
GB/T 7714
Michael L. Anderson,Jeremy Magruder. Highly Powered Analysis Plans. 2022.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w29843.pdf(611KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael L. Anderson]的文章
[Jeremy Magruder]的文章
百度学术
百度学术中相似的文章
[Michael L. Anderson]的文章
[Jeremy Magruder]的文章
必应学术
必应学术中相似的文章
[Michael L. Anderson]的文章
[Jeremy Magruder]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w29843.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。