G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27950
来源IDWorking Paper 27950
How to Talk When a Machine is Listening?: Corporate Disclosure in the Age of AI
Sean Cao; Wei Jiang; Baozhong Yang; Alan L. Zhang
发表日期2020-10-19
出版年2020
语种英语
摘要Growing AI readership, proxied by expected machine downloads, motivates firms to prepare filings that are friendlier to machine parsing and processing. Firms avoid words that are perceived as negative by computational algorithms, as compared to those deemed negative only by dictionaries meant for human readers. The publication of Loughran and McDonald (2011) serves as an instrumental event attributing the difference-in-differences in the measured sentiment to machine readership. High machine-readership firms also exhibit speech emotion assessed as embodying more positivity and excitement by audio processors. This is the first study exploring the feedback effect on corporate disclosure in response to technology.
主题Financial Economics ; Financial Markets ; Corporate Finance
URLhttps://www.nber.org/papers/w27950
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/585624
推荐引用方式
GB/T 7714
Sean Cao,Wei Jiang,Baozhong Yang,et al. How to Talk When a Machine is Listening?: Corporate Disclosure in the Age of AI. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27950.pdf(756KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sean Cao]的文章
[Wei Jiang]的文章
[Baozhong Yang]的文章
百度学术
百度学术中相似的文章
[Sean Cao]的文章
[Wei Jiang]的文章
[Baozhong Yang]的文章
必应学术
必应学术中相似的文章
[Sean Cao]的文章
[Wei Jiang]的文章
[Baozhong Yang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27950.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。