G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26907
来源IDWorking Paper 26907
Learning about the Neighborhood
Zhenyu Gao; Michael Sockin; Wei Xiong
发表日期2020-03-30
出版年2020
语种英语
摘要We develop a model to analyze information aggregation and learning in housing markets. In the presence of pervasive informational frictions, housing prices serve as important signals to households and capital producers about the economic strength of a neighborhood. Our model provides a novel mechanism for amplification through learning in which noise from the housing market can propagate to the local economy, distorting not only migration into the neighborhood, but also the supply of capital and labor. We provide consistent evidence of our model implications for housing price volatility and new construction using data from the recent U.S. housing cycle.
主题Macroeconomics ; Consumption and Investment ; Money and Interest Rates ; Financial Economics ; Financial Markets ; Regional and Urban Economics ; Real Estate
URLhttps://www.nber.org/papers/w26907
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584580
推荐引用方式
GB/T 7714
Zhenyu Gao,Michael Sockin,Wei Xiong. Learning about the Neighborhood. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26907.pdf(556KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhenyu Gao]的文章
[Michael Sockin]的文章
[Wei Xiong]的文章
百度学术
百度学术中相似的文章
[Zhenyu Gao]的文章
[Michael Sockin]的文章
[Wei Xiong]的文章
必应学术
必应学术中相似的文章
[Zhenyu Gao]的文章
[Michael Sockin]的文章
[Wei Xiong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26907.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。