G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26517
来源IDWorking Paper 26517
Text Selection
Bryan T. Kelly; Asaf Manela; Alan Moreira
发表日期2019-12-02
出版年2019
语种英语
摘要Text data is ultra-high dimensional, which makes machine learning techniques indispensable for textual analysis. Text is often selected—journalists, speechwriters, and others craft messages to target their audiences’ limited attention. We develop an economically motivated high dimensional selection model that improves learning from text (and from sparse counts data more generally). Our model is especially useful when the choice to include a phrase is more interesting than the choice of how frequently to repeat it. It allows for parallel estimation, making it computationally scalable. A first application revisits the partisanship of US congressional speech. We find that earlier spikes in partisanship manifested in increased repetition of different phrases, whereas the upward trend starting in the 1990s is due to entirely distinct phrase selection. Additional applications show how our model can backcast, nowcast, and forecast macroeconomic indicators using newspaper text, and that it substantially improves out-of-sample fit relative to alternative approaches.
主题Econometrics ; Estimation Methods ; Macroeconomics ; Macroeconomic Models ; Financial Economics ; Portfolio Selection and Asset Pricing ; Financial Markets
URLhttps://www.nber.org/papers/w26517
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584189
推荐引用方式
GB/T 7714
Bryan T. Kelly,Asaf Manela,Alan Moreira. Text Selection. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26517.pdf(784KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bryan T. Kelly]的文章
[Asaf Manela]的文章
[Alan Moreira]的文章
百度学术
百度学术中相似的文章
[Bryan T. Kelly]的文章
[Asaf Manela]的文章
[Alan Moreira]的文章
必应学术
必应学术中相似的文章
[Bryan T. Kelly]的文章
[Asaf Manela]的文章
[Alan Moreira]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26517.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。