G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w25791
来源IDWorking Paper 25791
Predicting High-Risk Opioid Prescriptions Before they are Given
Justine S. Hastings; Mark Howison; Sarah E. Inman
发表日期2019-04-29
出版年2019
语种英语
摘要Misuse of prescription opioids is a leading cause of premature death in the United States. We use new state government administrative data and machine learning methods to examine whether the risk of future opioid dependence, abuse, or poisoning can be predicted in advance of an initial opioid prescription. Our models accurately predict these outcomes and identify particular prior non-opioid prescriptions, medical history, incarceration, and demographics as strong predictors. Using our model estimates, we simulate a hypothetical policy which restricts new opioid prescriptions to only those with low predicted risk. The policy’s potential benefits likely outweigh costs across demographic subgroups, even for lenient definitions of “high risk.” Our findings suggest new avenues for prevention using state administrative data, which could aid providers in making better, data-informed decisions when weighing the medical benefits of opioid therapy against the risks.
主题Microeconomics ; Welfare and Collective Choice ; Health, Education, and Welfare ; Health ; Other ; Culture
URLhttps://www.nber.org/papers/w25791
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583464
推荐引用方式
GB/T 7714
Justine S. Hastings,Mark Howison,Sarah E. Inman. Predicting High-Risk Opioid Prescriptions Before they are Given. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w25791.pdf(519KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Justine S. Hastings]的文章
[Mark Howison]的文章
[Sarah E. Inman]的文章
百度学术
百度学术中相似的文章
[Justine S. Hastings]的文章
[Mark Howison]的文章
[Sarah E. Inman]的文章
必应学术
必应学术中相似的文章
[Justine S. Hastings]的文章
[Mark Howison]的文章
[Sarah E. Inman]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w25791.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。