G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24951
来源IDWorking Paper 24951
Occupational Classifications: A Machine Learning Approach
Akina Ikudo; Julia Lane; Joseph Staudt; Bruce Weinberg
发表日期2018-09-03
出版年2018
语种英语
摘要Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.
主题Econometrics ; Data Collection ; Labor Economics ; Labor Supply and Demand
URLhttps://www.nber.org/papers/w24951
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582625
推荐引用方式
GB/T 7714
Akina Ikudo,Julia Lane,Joseph Staudt,et al. Occupational Classifications: A Machine Learning Approach. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24951.pdf(438KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Akina Ikudo]的文章
[Julia Lane]的文章
[Joseph Staudt]的文章
百度学术
百度学术中相似的文章
[Akina Ikudo]的文章
[Julia Lane]的文章
[Joseph Staudt]的文章
必应学术
必应学术中相似的文章
[Akina Ikudo]的文章
[Julia Lane]的文章
[Joseph Staudt]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24951.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。