G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w20955
来源IDWorking Paper 20955
Demand Estimation with Machine Learning and Model Combination
Patrick Bajari; Denis Nekipelov; Stephen P. Ryan; Miaoyu Yang
发表日期2015-02-16
出版年2015
语种英语
摘要We survey and apply several techniques from the statistical and computer science literature to the problem of demand estimation. We derive novel asymptotic properties for several of these models. To improve out-of-sample prediction accuracy and obtain parametric rates of convergence, we propose a method of combining the underlying models via linear regression. Our method has several appealing features: it is robust to a large number of potentially-collinear regressors; it scales easily to very large data sets; the machine learning methods combine model selection and estimation; and the method can flexibly approximate arbitrary non-linear functions, even when the set of regressors is high dimensional and we also allow for fixed effects. We illustrate our method using a standard scanner panel data set to estimate promotional lift and find that our estimates are considerably more accurate in out of sample predictions of demand than some commonly used alternatives. While demand estimation is our motivating application, these methods are likely to be useful in other microeconometric problems.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w20955
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/578630
推荐引用方式
GB/T 7714
Patrick Bajari,Denis Nekipelov,Stephen P. Ryan,et al. Demand Estimation with Machine Learning and Model Combination. 2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Patrick Bajari]的文章
[Denis Nekipelov]的文章
[Stephen P. Ryan]的文章
百度学术
百度学术中相似的文章
[Patrick Bajari]的文章
[Denis Nekipelov]的文章
[Stephen P. Ryan]的文章
必应学术
必应学术中相似的文章
[Patrick Bajari]的文章
[Denis Nekipelov]的文章
[Stephen P. Ryan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。