G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w14169
来源IDWorking Paper 14169
Efficient Prediction of Excess Returns
Jon Faust; Jonathan H. Wright
发表日期2008-07-16
出版年2008
语种英语
摘要It is well known that augmenting a standard linear regression model with variables that are correlated with the error term but uncorrelated with the original regressors will increase asymptotic efficiency of the original coefficients. We argue that in the context of predicting excess returns, valid augmenting variables exist and are likely to yield substantial gains in estimation efficiency and, hence, predictive accuracy. The proposed augmenting variables are ex post measures of an unforecastable component of excess returns: ex post errors from macroeconomic survey forecasts and the surprise components of asset price movements around macroeconomic news announcements. These "surprises" cannot be used directly in forecasting--they are not observed at the time that the forecast is made--but can nonetheless improve forecasting accuracy by reducing parameter estimation uncertainty. We derive formal results about the benefits and limits of this approach and apply it to standard examples of forecasting excess bond and equity returns. We find substantial improvements in out-of-sample forecast accuracy for standard excess bond return regressions; gains for forecasting excess stock returns are much smaller.
主题Econometrics ; Estimation Methods ; Financial Economics ; Financial Markets
URLhttps://www.nber.org/papers/w14169
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/571843
推荐引用方式
GB/T 7714
Jon Faust,Jonathan H. Wright. Efficient Prediction of Excess Returns. 2008.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w14169.pdf(304KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jon Faust]的文章
[Jonathan H. Wright]的文章
百度学术
百度学术中相似的文章
[Jon Faust]的文章
[Jonathan H. Wright]的文章
必应学术
必应学术中相似的文章
[Jon Faust]的文章
[Jonathan H. Wright]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w14169.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。