G2TT
来源类型Discussion paper
规范类型论文
来源IDDP16666
DP16666 An Empirical Model of Quantity Discounts with Large Choice Sets
Alessandro Iaria; Ao Wang
发表日期2021-10-24
出版年2021
语种英语
摘要We introduce a Generalized Nested Logit model of demand for bundles that can be estimated sequentially and virtually eliminates any challenge of dimensionality related to large choice sets. We use it to investigate quantity discounts for carbonated soft drinks by simulating a counterfactual with linear pricing. The prices of quantities up to 1L decrease by -31.5% while those of larger quantities increase by +14.8%. Purchased quantities decrease by -20.4%, associated added sugar by -23.8%, and industry profit by -20.5%. Consumer surplus however reduces only moderately, suggesting that linear pricing may be effective in limiting added sugar intake.
主题Industrial Organization
关键词Quantity discounts Large choice sets Demand for bundles Generalized nested logit Carbonated soft drinks Purchase of multiple units
URLhttps://cepr.org/publications/dp16666
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/545605
推荐引用方式
GB/T 7714
Alessandro Iaria,Ao Wang. DP16666 An Empirical Model of Quantity Discounts with Large Choice Sets. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alessandro Iaria]的文章
[Ao Wang]的文章
百度学术
百度学术中相似的文章
[Alessandro Iaria]的文章
[Ao Wang]的文章
必应学术
必应学术中相似的文章
[Alessandro Iaria]的文章
[Ao Wang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。