G2TT
来源类型Discussion paper
规范类型论文
来源IDDP16267
DP16267 Machine Learning the Carbon Footprint of Bitcoin Mining
Héctor Calvo Pardo; Jose Olmo; Tullio Mancini
发表日期2021-06-16
出版年2021
语种英语
摘要Building on an economic model of rational Bitcoin mining, we measure the carbon footprint of Bitcoin mining power consumption using feedforward neural networks. After reviewing the literature on deep learning methods, we find associated carbon footprints of 3.8038, 23.8313 and 19.83472 MtCOe for 2017, 2018 and 2019, which conform with recent estimates, lie within the economic model bounds while delivering much narrower confidence intervals, and yet raise alarming concerns, given recent evidence from climate-weather integrated models. We demonstrate how machine learning methods can contribute to non-for-profit pressing societal issues, like global warming, where data complexity and availability can be overcome.
主题Public Economics
关键词Machine learning Carbon footprint Cryptocurrencies Nowcasting Feed- forward neural networks Climate change
URLhttps://cepr.org/publications/dp16267
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/545232
推荐引用方式
GB/T 7714
Héctor Calvo Pardo,Jose Olmo,Tullio Mancini. DP16267 Machine Learning the Carbon Footprint of Bitcoin Mining. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Héctor Calvo Pardo]的文章
[Jose Olmo]的文章
[Tullio Mancini]的文章
百度学术
百度学术中相似的文章
[Héctor Calvo Pardo]的文章
[Jose Olmo]的文章
[Tullio Mancini]的文章
必应学术
必应学术中相似的文章
[Héctor Calvo Pardo]的文章
[Jose Olmo]的文章
[Tullio Mancini]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。