G2TT
来源类型Discussion paper
规范类型论文
来源IDDP13402
DP13402 Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence
Michael Lechner; Anthony Strittmatter
发表日期2018-12-18
出版年2018
语种英语
摘要We investigate the finite sample performance of causal machine learning estimators for heterogeneous causal effects at different aggregation levels. We employ an Empirical Monte Carlo Study that relies on arguably realistic data Generation processes (DGPs) based on actual data. We consider 24 different DGPs, Eleven different causal machine learning estimators, and three aggregation levels of the estimated effects. In the main DGPs, we allow for selection into treatment based on a rich set of observable covariates. We provide evidence that the estimators can be categorized into three groups. The first group performs consistently well across all DGPs and aggregation levels. These estimators have multiple steps to account for the selection into the treatment and the outcome process. The second group shows competitive performance only for particular DGPs. The third group is clearly outperformed by the other estimators.
主题Labour Economics
关键词Causal machine learning Conditional average treatment effects Selection-on-observables Random forest Causal forest Lasso
URLhttps://cepr.org/publications/dp13402
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/542212
推荐引用方式
GB/T 7714
Michael Lechner,Anthony Strittmatter. DP13402 Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael Lechner]的文章
[Anthony Strittmatter]的文章
百度学术
百度学术中相似的文章
[Michael Lechner]的文章
[Anthony Strittmatter]的文章
必应学术
必应学术中相似的文章
[Michael Lechner]的文章
[Anthony Strittmatter]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。