G2TT
来源类型Discussion paper
规范类型论文
来源IDDP13245
DP13245 A composite likelihood approach for dynamic structural models
Fabio Canova; Christian Matthes
发表日期2018-10-15
出版年2018
语种英语
摘要We describe how to use the composite likelihood to ameliorate estimation, computational, and inferential problems in dynamic stochastic general equilibrium models. We present a number of situations where the methodology has the potential to resolve well-known problems and formally justifies existing practices. In each case we consider, we provide an example to illustrate how the approach works and its properties in practice.
主题International Macroeconomics and Finance ; Monetary Economics and Fluctuations
关键词Dynamic structural models Composite likelihood Identification Singularity Large scale models Panel data
URLhttps://cepr.org/publications/dp13245
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/542053
推荐引用方式
GB/T 7714
Fabio Canova,Christian Matthes. DP13245 A composite likelihood approach for dynamic structural models. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fabio Canova]的文章
[Christian Matthes]的文章
百度学术
百度学术中相似的文章
[Fabio Canova]的文章
[Christian Matthes]的文章
必应学术
必应学术中相似的文章
[Fabio Canova]的文章
[Christian Matthes]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。