Gateway to Think Tanks
来源类型 | Discussion paper |
规范类型 | 论文 |
来源ID | DP13245 |
DP13245 A composite likelihood approach for dynamic structural models | |
Fabio Canova; Christian Matthes | |
发表日期 | 2018-10-15 |
出版年 | 2018 |
语种 | 英语 |
摘要 | We describe how to use the composite likelihood to ameliorate estimation, computational, and inferential problems in dynamic stochastic general equilibrium models. We present a number of situations where the methodology has the potential to resolve well-known problems and formally justifies existing practices. In each case we consider, we provide an example to illustrate how the approach works and its properties in practice. |
主题 | International Macroeconomics and Finance ; Monetary Economics and Fluctuations |
关键词 | Dynamic structural models Composite likelihood Identification Singularity Large scale models Panel data |
URL | https://cepr.org/publications/dp13245 |
来源智库 | Centre for Economic Policy Research (United Kingdom) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/542053 |
推荐引用方式 GB/T 7714 | Fabio Canova,Christian Matthes. DP13245 A composite likelihood approach for dynamic structural models. 2018. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。