G2TT
来源类型Discussion paper
规范类型论文
来源IDDP10239
DP10239 How good are out of sample forecasting Tests on DSGE models?
Patrick Minford
发表日期2014-11-09
出版年2014
语种英语
摘要Out-of-sample forecasting tests of DSGE models against time-series benchmarks such as an unrestricted VAR are increasingly used to check a) the specification b) the forecasting capacity of these models. We carry out a Monte Carlo experiment on a widely-used DSGE model to investigate the power of these tests. We find that in specification testing they have weak power relative to an in-sample indirect inference test; this implies that a DSGE model may be badly mis-specified and still improve forecasts from an unrestricted VAR. In testing forecasting capacity they also have quite weak power, particularly on the lefthand tail. By contrast a model that passes an indirect inference test of specification will almost definitely also improve on VAR forecasts.
主题International Macroeconomics
关键词Dsge Forecast performance indirect inference Out of sample forecasts Specification tests Var
URLhttps://cepr.org/publications/dp10239
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/539072
推荐引用方式
GB/T 7714
Patrick Minford. DP10239 How good are out of sample forecasting Tests on DSGE models?. 2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Patrick Minford]的文章
百度学术
百度学术中相似的文章
[Patrick Minford]的文章
必应学术
必应学术中相似的文章
[Patrick Minford]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。