G2TT
来源类型Discussion paper
规范类型论文
来源IDDP10160
DP10160 A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics
Henry Allan Timmermann; Davide Pettenuzzo
发表日期2014-09-21
出版年2014
语种英语
摘要We propose a new approach to predictive density modeling that allows for MIDAS effects in both the first and second moments of the outcome and develop Gibbs sampling methods for Bayesian estimation in the presence of stochastic volatility dynamics. When applied to quarterly U.S. GDP growth data, we find strong evidence that models that feature MIDAS terms in the conditional volatility generate more accurate forecasts than conventional benchmarks. Finally, we find that forecast combination methods such as the optimal predictive pool of Geweke and Amisano (2011) produce consistent gains in out-of-sample predictive performance.
主题Financial Economics
关键词Bayesian estimation Gdp growth Midas regressions Out-of-sample forecasts stochastic volatility
URLhttps://cepr.org/publications/dp10160
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/538993
推荐引用方式
GB/T 7714
Henry Allan Timmermann,Davide Pettenuzzo. DP10160 A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics. 2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Henry Allan Timmermann]的文章
[Davide Pettenuzzo]的文章
百度学术
百度学术中相似的文章
[Henry Allan Timmermann]的文章
[Davide Pettenuzzo]的文章
必应学术
必应学术中相似的文章
[Henry Allan Timmermann]的文章
[Davide Pettenuzzo]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。