G2TT
来源类型Discussion paper
规范类型论文
来源IDDP9334
DP9334 Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility
Massimiliano Marcellino; Fabrizio Venditti
发表日期2013-02-10
出版年2013
语种英语
摘要In this paper we develop a mixed frequency dynamic factor model featuring stochastic shifts in the volatility of both the latent common factor and the idiosyncratic components. We take a Bayesian perspective and derive a Gibbs sampler to obtain the posterior density of the model parameters. This new tool is then used to investigate business cycle dynamics and for forecasting GDP growth at short-term horizons in the euro area. We discuss three sets of empirical results. First we use the model to evaluate the impact of macroeconomic releases on point and density forecast accuracy and on the width of forecast intervals. Second, we show how our setup allows to make a probabilistic assessment of the contribution of releases to forecast revisions. Third we design a pseudo out of sample forecasting exercise and examine point and density forecast accuracy. In line with findings in the Bayesian Vector Autoregressions (BVAR) literature we find that stochastic volatility contributes to an improvement in density forecast accuracy.
主题International Macroeconomics
关键词Business cycle Forecasting Mixed-frequency data Nonlinear models Nowcasting
URLhttps://cepr.org/publications/dp9334
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/538170
推荐引用方式
GB/T 7714
Massimiliano Marcellino,Fabrizio Venditti. DP9334 Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility. 2013.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Massimiliano Marcellino]的文章
[Fabrizio Venditti]的文章
百度学术
百度学术中相似的文章
[Massimiliano Marcellino]的文章
[Fabrizio Venditti]的文章
必应学术
必应学术中相似的文章
[Massimiliano Marcellino]的文章
[Fabrizio Venditti]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。