G2TT
来源类型Report
规范类型报告
DOIhttps://doi.org/10.7249/RRA341-2
来源IDRR-A341-2
Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 2, Technical Analysis and Supporting Material
Lance Menthe; Dahlia Anne Goldfeld; Abbie Tingstad; Sherrill Lingel; Edward Geist; Donald Brunk; Amanda Wicker; Sarah Lovell; Balys Gintautas; Anne Stickells; et al.
发表日期2021-01-27
出版年2021
语种英语
结论 Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 2, Technical Analysis and Supporting Material | RAND
摘要

Intelligence collections and demand have grown over the past two decades, and intelligence analysts are often performing routine tasks, leaving them unable to conduct larger strategic analyses that are needed to address future threats as outlined by the 2018 National Defense Strategy. The authors provide an in-depth analysis of technologies that could help the Air Force Distributed Common Ground System (AF DCGS) become more effective, efficient, adept at using human capital, and agile. A key point is that artificial intelligence (AI) and machine learning (ML) technologies alone do not solve these intelligence challenges; rather, if they are properly implemented and complemented by human analysts who have the right skills and training, the capabilities can allow the AF DCGS to evolve to better meet warfighter needs.

,

This is the second volume in a series about how AI/ML technology can help the AF DCGS meet the challenges of a demanding intelligence environment and the complexity of future threats envisioned by the 2018 National Defense Strategy. The authors provide more in-depth discussion of project methodology; a primer on AI/ML technology; case studies of analytic challenges in previous operations; best practices for successfully deploying new technologies; and other topics of interest to specialists, stakeholders, and experts.

目录
  • Chapter One

    Introduction

  • Chapter Two

    Overview of the AF DCGS Today

  • Chapter Three

    Improving Efficiency, Effectiveness, Human Capital, and Agility: Lessons from Historical Case Studies

  • Chapter Four

    Artificial Intelligence and Machine Learning: A Primer for AF DCGS Analysts

  • Chapter Five

    Improving GEOINT Analysis: Additional Detail

  • Chapter Six

    Rebalancing AF DCGS Competencies and Organization: Additional Detail

  • Chapter Seven

    Building the Right Skills: Additional Detail

  • Chapter Eight

    Fostering Innovation and Successful Implementation: Additional Detail

  • Appendix A

    Defining Technology Readiness Levels for Artificial Intelligence/Machine Learning

主题Intelligence Analysis ; Intelligence Collection ; Machine Learning ; Military Logistics ; United States Air Force
URLhttps://www.rand.org/pubs/research_reports/RRA341-2.html
来源智库RAND Corporation (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/524350
推荐引用方式
GB/T 7714
Lance Menthe,Dahlia Anne Goldfeld,Abbie Tingstad,et al. Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 2, Technical Analysis and Supporting Material. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
RAND_RRA341-2.pdf(4136KB)智库出版物 限制开放CC BY-NC-SA浏览
x1612817545661.jpg.p(3KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lance Menthe]的文章
[Dahlia Anne Goldfeld]的文章
[Abbie Tingstad]的文章
百度学术
百度学术中相似的文章
[Lance Menthe]的文章
[Dahlia Anne Goldfeld]的文章
[Abbie Tingstad]的文章
必应学术
必应学术中相似的文章
[Lance Menthe]的文章
[Dahlia Anne Goldfeld]的文章
[Abbie Tingstad]的文章
相关权益政策
暂无数据
收藏/分享
文件名: RAND_RRA341-2.pdf
格式: Adobe PDF
此文件暂不支持浏览
文件名: x1612817545661.jpg.pagespeed.ic.SFmngICqgP.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。