Gateway to Think Tanks
来源类型 | Publication |
The Internal and External Validity of the Regression Discontinuity Design: A Meta-Analysis of 15 Within-Study Comparisons | |
Duncan D. Chaplin; Thomas D. Cook; Jelena Zurovac; Jared S. Coopersmith; Mariel M. Finucane; Lauren N. Vollmer; and Rebecca E. Morris | |
发表日期 | 2018-02-09 |
出版者 | Journal of Policy Analysis and Management (online ahead of print) |
出版年 | 2018 |
语种 | 英语 |
概述 | We test RD’s validity across 15 studies, each of which compared impact estimates from RD with those from a corresponding RCT. We find bias below 0.01 standard deviations on average, and below 0.07 by study based on results shrunken to capitalize on information from the other studies.", |
摘要 | Key Findings:
Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD’s internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ.We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD’s high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts,now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used. |
URL | https://www.mathematica.org/our-publications-and-findings/publications/the-internal-and-external-validity-of-the-regression-discontinuity-design-a-meta-analysis-of-15 |
来源智库 | Mathematica Policy Research (United States) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/489150 |
推荐引用方式 GB/T 7714 | Duncan D. Chaplin,Thomas D. Cook,Jelena Zurovac,et al. The Internal and External Validity of the Regression Discontinuity Design: A Meta-Analysis of 15 Within-Study Comparisons. 2018. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。