Gateway to Think Tanks
来源类型 | Book Section |
DOI | 10.1007/978-3-319-27460-7_12 |
N2O Release from agro-biofuel production negates global warming reduction by replacing fossil fuels. | |
Crutzen PJ; Mosier AR; Smith KA; Winiwarter W | |
发表日期 | 2016 |
出处 | Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene. pp. 227-238 Glan, Switzerland: Springer International Publishing. ISBN 978-3-319-27460-7 DOI: 10.1007/978-3-319-27460-7_12 . |
出版年 | 2016 |
语种 | 英语 |
摘要 | The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3–5 % from newly fixed N to N2O–N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for ‘direct’ emissions from agricultural crop lands (1 %) estimated by IPCC (2006), and the default factors for the ‘indirect’ emissions (following volalilization/deposition and leaching/runoff of N: 0.35–0.45 %) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our “top-down” method. When the extra N2O emission from biofuel production is calculated in “CO2-equivalent” global warming terms, and compared with the quasi-cooling effect of ‘saving’ emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment. |
主题 | Air Quality & ; Greenhouse Gases (AIR) |
URL | http://pure.iiasa.ac.at/id/eprint/13272/ |
来源智库 | International Institute for Applied Systems Analysis (Austria) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/134491 |
推荐引用方式 GB/T 7714 | Crutzen PJ,Mosier AR,Smith KA,et al. N2O Release from agro-biofuel production negates global warming reduction by replacing fossil fuels.. 2016. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
acp-8-389-2008.pdf(274KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。