Gateway to Think Tanks
来源类型 | Article |
规范类型 | 其他 |
DOI | 10.1098/rsta.2016.0455 |
Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. | |
Rosenzweig C; Ruane AC; Antle J; Elliott J; Ashfaq M; Chatta AA; Ewert F; Folberth C | |
发表日期 | 2018 |
出处 | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2119): e20160455 |
出版年 | 2018 |
语种 | 英语 |
摘要 | The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.5°C and 2.0°C above pre-industrial conditions. The protocols for the 1.5°C/2.0°C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) and Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble scenarios, global gridded crop models, global agricultural economics models, site-based crop models and within-country regional economics models. The CGRA consistently links disciplines, models and scales in order to track the complex chain of climate impacts and identify key vulnerabilities, feedbacks and uncertainties in managing future risk. CGRA proof-of-concept results show that, at the global scale, there are mixed areas of positive and negative simulated wheat and maize yield changes, with declines in some breadbasket regions, at both 1.5°C and 2.0°C. Declines are especially evident in simulations that do not take into account direct CO2 effects on crops. These projected global yield changes mostly resulted in increases in prices and areas of wheat and maize in two global economics models. Regional simulations for 1.5°C and 2.0°C using site-based crop models had mixed results depending on the region and the crop. In conjunction with price changes from the global economics models, productivity declines in the Punjab, Pakistan, resulted in an increase in vulnerable households and the poverty rate. |
主题 | Ecosystems Services and Management (ESM) |
URL | http://pure.iiasa.ac.at/id/eprint/15198/ |
来源智库 | International Institute for Applied Systems Analysis (Austria) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/131473 |
推荐引用方式 GB/T 7714 | Rosenzweig C,Ruane AC,Antle J,et al. Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments.. 2018. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。