Gateway to Think Tanks
来源类型 | Article |
规范类型 | 其他 |
DOI | 10.1080/14697688.2015.1114364 |
Efficient calculation of the Greeks for exponential Lévy processes: an application of measure valued differentiation. | |
Pflug G; Thoma P | |
发表日期 | 2016 |
出处 | Quantitative Finance 16 (2): 247-257 |
出版年 | 2016 |
语种 | 英语 |
摘要 | Monte Carlo simulation methods have become more and more important in the financial sector in the past years. In this paper, we introduce a new simulation method for the estimation of the derivatives of prices of financial contracts with respect to (w.r.t.) certain distributional parameters called the ‘Greeks’. In particular, we assume that the underlying financial process is a Lévy-type process in discrete time. Our method is based on the Measure-Valued Differentiation (MVD) approach, which allows representation of derivatives as differences of two processes, called the phantoms. We discuss the applicability of MVD for different types of option pay-offs in combination with different types of models of the underlying and provide a framework for the applicability of MVD for path-dependent pay-off functions, as Lookback Options or Asian Options. |
主题 | Risk & ; Resilience (RISK) ; Risk, Policy and Vulnerability (RPV) |
关键词 | Asian options Estimation of the Greeks Exotic options Lookback option Lévy-Processes Measure valued differentiation |
URL | http://pure.iiasa.ac.at/id/eprint/11927/ |
来源智库 | International Institute for Applied Systems Analysis (Austria) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/130541 |
推荐引用方式 GB/T 7714 | Pflug G,Thoma P. Efficient calculation of the Greeks for exponential Lévy processes: an application of measure valued differentiation.. 2016. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
Efficient%20calculat(392KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Pflug G]的文章 |
[Thoma P]的文章 |
百度学术 |
百度学术中相似的文章 |
[Pflug G]的文章 |
[Thoma P]的文章 |
必应学术 |
必应学术中相似的文章 |
[Pflug G]的文章 |
[Thoma P]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。