G2TT
来源类型Article
规范类型其他
DOI10.1088/1367-2630/aadcbe
Classification of complex systems by their sample-space scaling exponents.
Korbel J; Hanel R; Thurner S
发表日期2018
出处New Journal of Physics 20 (9): e093007
出版年2018
语种英语
摘要The nature of statistics, statistical mechanics and consequently the thermodynamics of stochastic systems is largely determined by how the number of states W(N) depends on the size N of the system. Here we propose a scaling expansion of the phasespace volume W(N) of a stochastic system. The corresponding expansion coefficients (exponents) define the universality class the system belongs to. Systems within the same universality class share the same statistics and thermodynamics. For sub-exponentially growing systems such expansions have been shown to exist. By using the scaling expansion this classification can be extended to all stochastic systems, including correlated, constraint and super-exponential systems. The extensive entropy of these systems can be easily expressed in terms of these scaling exponents. Systems with super-exponential phasespace growth contain important systems, such as magnetic coins that combine combinatorial and structural statistics. We discuss other applications in the statistics of networks, aging, and cascading random walks.
主题Advanced Systems Analysis (ASA)
关键词:scaling expansion, extensive entropy, super-exponential systems, complex systems, sample space
URLhttp://pure.iiasa.ac.at/id/eprint/15529/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/131321
推荐引用方式
GB/T 7714
Korbel J,Hanel R,Thurner S. Classification of complex systems by their sample-space scaling exponents.. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Korbel_2018_New_J._P(645KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Korbel J]的文章
[Hanel R]的文章
[Thurner S]的文章
百度学术
百度学术中相似的文章
[Korbel J]的文章
[Hanel R]的文章
[Thurner S]的文章
必应学术
必应学术中相似的文章
[Korbel J]的文章
[Hanel R]的文章
[Thurner S]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Korbel_2018_New_J._Phys._20_093007.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。